Control of protein-binding kinetics on synthetic polymer nanoparticles by tuning flexibility and inducing conformation changes of polymer chains.
نویسندگان
چکیده
Although a number of procedures to create synthetic polymer nanoparticles (NPs) with an intrinsic affinity to target biomacromolecules have been published, little has been reported on strategies to control the binding kinetics of target recognition. Here, we report an enzyme-mimic strategy to control binding/dissociation rate constants of NPs, which bind proteins through multipoint interactions, by taking advantage of the temperature-responsive coil-globule phase transition of poly-N-isopropylacrylamide (PNIPAm)-based NPs. PNIPAm NPs with a "flexible" random-coil conformation had a faster binding rate than NPs with a "rigid" globule conformation; however, the dissociation rate constant remained unchanged, resulting in stronger affinity. The dissociation rate of the "flexible" NPs was decelerated by the "induced-fit"-type conformation change of polymers around the coil-globule phase transition temperature, resulting in the formation of the most stable NP-protein complexes. These results provide a guide for designing plastic antibodies with tailor-made binding kinetics and equilibrium constants.
منابع مشابه
Assembly of Nanoparticles using Surface-Grafted Orthogonal Polymer Gradients
Polymer-coated surfaces are routinely used in industrially important applications including prevention of biofouling (in fabrication of protein-resistant surfaces), improving stability of colloidal dispersions, surface lubrication, or enhancing wettability and adhesion. Polymer chains chemically bound to the surface represent a special class of polymer coatings that has gained considerable atte...
متن کاملModified Polyethylenimine: Self Assemble Nanoparticle Forming Polymer for pDNA Delivery
Objective Polyethylenimine (PEI), a readily available synthetic polycation which has high transfection efficiency owing to its buffering capacity was introduced for transfection a few years ago. But it has been reported that PEI is cytotoxic in many cell lines. In this study, in order to enhance the transfection efficiency of 10 kDa PEI and reduce its toxicity, hydrophobic residues were grafte...
متن کاملSynthesis of Polybutadiene Nanoparticles via Emulsion Polymerization: Effect of Reaction Temperature on the Polymer Microstructure, Particle Size and Reaction Kinetics
Polybutadiene nanoparticles were synthesized via batch emulsion polymerization of butadiene in the presence of potassium persulfate, disproportionate rosinate potassium cation and t-dodecyl mercaptane as initiator, emulsifier and chain transfer agent, respectively. Polymerization reaction was performed at different temperatures (60, 70 and 80 °C). Conversion was measured at the various time int...
متن کاملDirect Measurements of Polymer Brush Conformation Using Small- Angle Neutron Scattering (SANS) from Highly Grafted Iron Oxide Nanoparticles in Homopolymer Melts
Small-angle neutron scattering (SANS) is a sensitive technique that is able to probe the structure of polymer-grafted nanoparticles and free polymer chains. Here, we combine SANS measurements with self-consistent field theory (SCFT) calculations to study the structure of deuterated poly(methyl methacrylate) (dPMMA) nanocomposites containing PMMA-grafted Fe3O4 nanospheres, with a specific emphas...
متن کاملAnticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation
Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 134 37 شماره
صفحات -
تاریخ انتشار 2012